Sains Malaysiana 52(12)(2023):3407-3419

http://doi.org/10.17576/jsm-2023-5212-05

 

Rand Protease: The Role of Calcium-Binding Site on Stability with Mutagenesis and the Effectiveness on Leather Dehairing

(Rand Protease: Peranan Tapak Pengikat Kalsium terhadap Kestabilan dengan Mutagenesis dan Keberkesanan terhadap Penyahbuluan Kulit)

 

PHANG ZI WEI1, NUR ALIYAH MOHD AZRIN2, MOHD SHUKURI MOHAMAD ALI1,2 & NOOR DINA MUHD NOOR1,2,*

 

1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Enzyme and Microbial Research Center, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Diserahkan: 7 Mei 2023/Diterima: 21 Disember 2023

 

ABSTRACT

Bacillus subtilis produces a number of proteases, which are highly demanded in various industries, especially the thermostable one. Rand protease, originally isolated from B. subtilis, has thermostability and other remarkable properties such as organic solvent tolerance and pH stability. However, its vulnerability to instability-induced degradation has limited its applications. Because Rand protease contains two calcium ions for folding, activation, and, above all, stability, previous studies have shown that boosting the calcium-binding affinity enhances stability. Therefore, Rand protease’s susceptibility to degradation could be remedied by discovering the calcium-binding site having the greatest impact on stability for further calcium-binding affinity improvement. This was done with an in silico mutagenesis approach whereby one calcium-binding site was mutated to alanine and evaluated either the RMSD, the deviation of the mutated configuration from the original configuration using YASARA, or stability in terms of kcal/mol using HotSpot Wizard. The result found that calcium-binding sites Leu75 from YASARA and Tyr171 from HotSpot Wizard have higher influences on stability (our target). This result was also validated using Pymol, ExPASy ProtParam, and Molprobity. Additionally, Rand protease-chemical formulation dehairs leather best without additional metal ions at pH 7.0 and for 18 h. It also produced higher-quality leather with smaller pores and softer leather than chemical formulations. In contrast, hair breakage was observed in calcium treatment, which is compatible with the low dehairing activity achieved. In conclusion, Leu75 and Tyr171 are vital for calcium stabilisation and this enzyme has demonstrated its crucial efficacy in the leather dehairing industry.

 

Keywords: Calcium-binding site; Leather dehairing industry; Rand protease; stability

 

ABSTRAK

Bacillus subtilis menghasilkan sejumlah protease yang amat diperlukan dalam pelbagai industri, terutamanya yang berkaitan dengan kestabilan terma. Protein Rand yang dipencilkan daripada B. subtilis mempunyai kestabilan terma dan ciri luar biasa lain seperti toleransi terhadap pelarut organik dan kestabilan pH. Walau bagaimanapun, kelemahannya terhadap degradasi akibat ketidakstabilan telah mengehadkan penggunaannya. Oleh kerana protein Rand mengandungi dua ion kalsium untuk lipatan, pengaktifan dan yang paling penting sekali kestabilan, kajian terdahulu telah menunjukkan bahawa peningkatan keafinan pengikat kalsium mampu meningkatkan kestabilan. Oleh itu, kerentanan protein Rand terhadap degradasi boleh diperbaiki dengan meneliti tapak pengikat kalsium yang mempunyai kesan paling besar terhadap kestabilan untuk menambahbaik keafinan pengikat kalsium. Ini boleh dilakukan dengan pendekatan mutagenesis secara in silico dengan satu tapak pengikat kalsium dimutasi kepada alanina dan penilaiannya dilakukan sama ada daripada segiRMSD, sisihan konfigurasi bermutasi daripada konfigurasi asal menggunakan YASARA, atau daripada segi kestabilan, kcal/mol menggunakan HotSpot Wizard. Hasilnya, didapati bahawa tapak pengikat kalsium Leu75 daripada YASARA dan Tyr171 daripada HotSpot Wizard, mempunyai pengaruh yang lebih tinggi terhadap kestabilan (sasaran) berbanding tapak pengikat kalsium yang lain. Keputusan ini juga telah disahkan menggunakan Pymol, ExPASy ProtParam dan Molprobity. Tambahan pula, formulasi kimia protein Rand mengenyah kulit dengan baik tanpa ion logam tambahan pada pH 7.0, selama 18 jam. Ia juga menghasilkan kulit berkualiti tinggi seperti liang pori yang lebih kecil dan kulit yang lebih lembut berbanding formulasi kimia. Selain itu, tahap kepatahan rambut yang turut diperhatikan dalam rawatan kalsium, menunjukkan keserasian apabila aktiviti penyahbuluan kulit mencapai tahap yang rendah. Kesimpulannya, Leu75 dan Tyr171 adalah penting untuk penstabilan kalsium dan enzim ini telah menunjukkan keberkesanannya yang penting dalam industri penyahbuluan kulit.

 

Kata kunci: Industri penyahbuluan kulit; kestabilan; protein Rand; tapak pengikat kalsium

 

RUJUKAN

Abusham, R.A., Rahman, R.N.Z.R.A., Salleh, A.B. & Basri, M. 2009. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microbial Cell Factories 8(1): 20.

Abusham, R.A.K., Masomian, M., Salleh, A.B., Thean, A.C.L. & Rahman, R.N.Z.R.A. 2019. An in silico approach to understanding the structure-function: A molecular dynamics simulation study of Rand serine protease properties from Bacillus subtilis in aqueous solvents. Advances in Biotechnology & Microbiology 12(2): 2474-4637.

Ahmad, M., Tahir, A. & Anjum, R. 2020. Heat stability of proteins and its exploitation for purification of heat-stable proteins. Preprints 2020080225. https://doi.org/10.20944/preprints202008.0225.v1

Azrin, N.A.M., Ali, M.S.M., Rahman, R.N.Z.R.A., Oslan, S.N. & Noor, N.D.M. 2022. Versatility of subtilisin: A review on structure, characteristics, and applications. Biotechnology and Applied Biochemistry 69(6): 2599-2616.

Bendl, J., Stourac, J., Sebestova, E., Vavra, O., Musil, M., Brezovsky, J. & Damborsky, J. 2016. HotSpot Wizard 2.0: Automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Research 44(W1): W479-W487.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1): 248-254.

Califano, V. & Costantini, A. 2021. Enzyme immobilization and biocatalysis. Catalysts 11(7): 823.

Chapman, T. 2018. Sunset 2020 NOSB final review crops substances §205.601, §205.602. National Organic Standard Board.

Chen, V.B., Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze, B.J., Jain, S., Lewis, S.M., Arendall, W.B., Snoeyink, J., Adams, P.D., Lovell, S.C., Richardson, J.S. & Richardson, D.C. 2010. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica D66: 12-21.

Eser, A. & Aydemir, T. 2022. Subtilisin Carlsberg immobilization and its application for eco-friendly leather processing. Journal of Cleaner Production 377: 134296.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. & Bairoch, A. 2005. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, edited by Walker, J.M., New Jersey: Humana Press. pp. 571-607.

Gianfreda, L. & Scarfi, M.R. 1991. Enzyme stabilization: State of the art. Molecular and Cellular Biochemistry 100: 97-128.

Grantham, R. 1974. Amino acid difference formula to help explain protein evolution. Science 185(4154): 862-864.

Hakim, A., Bhuiyan, F.R., Iqbal, A., Emon, T.H., Ahmed, J. & Azad, A.K. 2018. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 4(6): e00646.

Jung, Y.E., Lee, K.W., Cho, J.H., Bae, D.W., Jeong, B.G., Jung, Y.J., Park, S.B., An, Y.J., Kim, K., Lee, G.S., Kang, L.W., Moon, J.H., Lee, J.H., Kim, E.K., Yim, H.S. & Cha, S.S. 2023. Heating-mediated purification of active FGF21 and structure-based design of its variant with enhanced potency. Scientific Reports 13: 1005.

Mehrnoush, A., Mustafa, S. & Yazid, A.M.M. 2011. Heat-treatment aqueous two phase system for purification of serine protease from kesinai (Streblus asper) leaves. Molecules 16(12): 10202-10213.

Mohanty, M. & Mohanty, P.S. 2023. Molecular docking in organic, inorganic, and hybrid systems: A tutorial review. Monatshefte fur Chemie154: 683-707.

Mukhtar, H. & Haq, I. 2008. Production of alkaline protease by Bacillus subtilis and its application as a depilating agent in leather processing. Pakistan Journal of Botany 40(4): 1673-1679.

Pal, S. & Mitra, R.K. 2022. Investigation on the effect of nonpolar amino acids as macromolecular crowders on the stability of globular proteins. Chemical Thermodynamics and Thermal Analysis 6: 100044.

Schrödinger, L. & DeLano, W. 2020. PyMOL. http://www.pymol.org/pymol. Accessed January 2, 2023.

Shaikh, I.K., Dixit, P.P. & Shaikh, T.M. 2018. Purification and characterization of alkaline soda-bleach stable protease from Bacillus sp. APP-07 isolated from Laundromat soil. Journal of Genetic Engineering and Biotechnology 16(2): 273-279.

Sirvaityte, J., Vaitaisi, U. & Jaimaines, G. 2015. Immunization Action of Sodium Silicate on Hair: Part 2 Hair-Save Process Based on Lime Subtitution by Sodium Silicate (PCT. Patent No. WO 2021101381A1). International Application Published Under the Patent Coorperation Treaty (PCT). https://patents.google.com/patent/WO2021101381A1/en

Sivasubramanian, S., Manohar, B.M. & Puvanakrishnan, R. 2008. Mechanism of enzymatic dehairing of skins using a bacterial alkaline protease. Chemosphere 70(6): 1025-1034.

Sivasubramanian, S., Manohar, B.M., Rajaram, A. & Puvanakrishnan, R. 2008. Ecofriendly lime and sulfide free enzymatic dehairing of skins and hides using a bacterial alkaline protease. Chemosphere 70(6): 1015-1024.

Suharti, S., Riesmi, M.T., Hidayati, A., Zuhriyah, U.F., Wonorahardjo, S. & Susanti, E. 2018. Enzymatic dehairing of goat skin using keratinase from Bacillus sp. MD24, a newly isolated soil bacterium. Pertanika Journal of Tropical Agricultural Science 41: 1449-1461.

Sumbalova, L., Stourac, J., Martinek, T., Bednar, D. & Damborsky, J. 2018. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Research 46(W1): W356-W362.

Suraj, S. & Onkar, S. 2022. Enzymes Market Statistics, Growth Drivers: Forecast – 2031. Allied Market Research. https://www.alliedmarketresearch.com/enzymes-market. Accessed September 7, 2022.

Thanikaivelan, P., Rao, J. & Nair, B. 2000. Development of a leather processing method in narrow pH profile: Part 1. Standardisation of dehairing process. Journal of the Society of Leather Technologists and Chemists 84: 276-284.

Ullah, N., Rehman, M.U., Sarwar, A., Nadeem, M., Nelofer, R., Shakir, H.A., Irfan, M., Idrees, M., Naz, S., Nabi, G., Shah, S., Aziz, T., Alharbi, M., Alshammari, A. & Alqahtani, F. 2022. Purification, characterization, and application of alkaline protease enzyme from a locally isolated Bacillus cereus strain. Fermentation 8(11): 628. 

Vlavianos, C. 2020. Global SO2 Emissions Drop in 2019 – Greenpeace Global Ranking. Greenpeace Africa. https://www.greenpeace.org/africa/en/press/12340/global-so2-emissions-drop-in-2019-greenpeace-global-ranking/. Accessed July 20, 2022.

Volza Grow Global. 2023. Protease Enzyme Imports in Germany. https://www.volza.com/p/protease-enzyme/import/import-in-germany/. Accessed November 9, 2023.

Ward, O.P. 2011. 3.49- Proteases in Comprehensive Biotechnology. 2nd ed. Massachusetts: Academic Press. pp. 571-582. https://doi.org/https://doi.org/10.1016/B978-0-08-088504-9.00222-1

Zekeya, N., China, C., Mbwana, S. & Mtambo, M. 2019. Dehairing of animal hides and skins by alkaline proteases of Aspergillus oryzae for efficient processing to leather products in Tanzania. African Journal of Biotechnology 18(20): 426-434.

 

*Pengarang untuk surat-menyurat; email: dina@upm.edu.my

 

 

 

 

 

 

 

 

   

sebelumnya